

GUILD Conference 2022 February 20-23

Wailea Marriott • Maui, Hawaii

Disclosures

• Consultant for Freenome Inc and Iterative Scopes

Outline

- Principles of Chemoprevention
- Historical perspective
- Evidence review Supplemental agents for Cancer and CRC
- Best Practice Advice

Introduction

-Single cancer

-Too late or too difficult

- Diet vs. supplement

Approach

- Anatomic
- Public Health
- Metabolic

Mechanism

- Remove adenoma
- Remove carcinogen
- Chemoprevention

Examples

- Colon adenomas
- Smoking Cessation

Big Picture

Historical

Cardiovascular event	Colorectal cancer
Measurement of systolic and diastolic blood pressure	1900s
Wide prevalence of blood pressure monitors	1930s
Usefulness of blood pressure as a biomarker	1970s
Usefulness of serum cholesterol as a biomarker	1980s
Preventive effect of aspirin in RCTs	Adenoma-carcinoma sequence in CRC
Preventive effect of statins in RCTs	1990s CRC reduction by endoscopic polypectomy
	Usefulness of ACF as a surrogate marker of CRC 2000s RCTs of calcium
Preventive effect of EPA in RCTs	Aspirin prevented adenomas in RCTs Coxibs prevented adenomas in RCTs
	2010s
	Metformin prevented adenomas in a RCT

Umezawa S, Higurashi T, Komiya Y, et al. Chemoprevention of colorectal cancer: Past, present, and future. *Cancer Sci.* 2019;110(10):3018-3026.

Late 20th century Chemoprevention candidates

	CVD	Cancer
B-Carotene	Harmful	Harmful
Vitamin C and E	Didn't work	Didn't Work
Folic Acid	Didn't work	Didn't work
ASA	Beneficial	Beneficial

Katona BW, Weiss JM. Chemoprevention of Colorectal Cancer. Gastroenterology. 2020;158(2):368-388

Molecular Basis of Colon Carcinogenesis

Modified from Vogelstein B, Knizler KW. The multi-step nature of cancer. Trends Genet 1993; 9:138-141.

ASA

Aspirin for CRC

ASA and CRC Risk

Chan AT, et al. Aspirin in the chemoprevention of colorectal neoplasia: an overview. Cancer Prev Res (Phila). 2012 Feb;5(2):164-78.

B. Patients with scheduled duration of trial treatment ≥ 2.5 years

C. Patients with scheduled duration of trial treatment ≥ 5 years

Risk Benefit Ratio

Hypothetical Example: Population of 100,000 Risk=1.5 per 1000 cases/year*

*Colorectal cancer risk in US males, aged 65-69 years

- Effective agent: ↓ 50% of CRC after 5 years
- Safe: annual risks of 0.01% stroke, 0.1% GI bleed
- Other benefit: prevents MI 0.1% per year
- Over 10 years: 375 CRC
 - 1000 MI's
 - +100 strokes
 - +1000 GI bleeds

Net: ???

Off target effects matter

- Toxicity can negate an "effective" agent.
- Non-colorectal benefits may be needed for effectiveness

Annals of Internal Medicine

www.USPreventiveServicesTaskForce.org

Population	Adults aged 50 to 59 y with a ≥10% 10-y CVD risk	Adults aged 60 to 69 y with a ≥10% 10-y CVD risk	Adults younger than 50 y	Adults aged 70 y or older
Recommendation	Initiate low-dose aspirin use. Grade: B	The decision to initiate low-dose aspirin use is an individual one. Grade: C	No recommendation	No recommendation. Grade: I (insufficient evidence)

Population	Recommendation 2021	<u>Grade</u>
Adults ages 40 to 59 years with a 10% or greater 10-year cardiovascular disease (CVD) risk	Individualize decision	C
Adults age 60 years or older	The USPSTF recommends against initiating low-dose aspirin use for the primary prevention of CVD in adults age 60 years or older.	D

Bibbins-Domingo etal. AIM 2016 Jun 21;164(12):836-45.

ASA and Folic Acid for CRC Precursor lesions: RCT

• N=1409

Adenomas, No./Total No. (%) of Patients		
Folate	Placebo	
87/168 (51.8)	70/162 (43.2)	
58/168 (34.5)	65/166 (39.2)	
76/165 (46.1)	71/158 (44.9)	
27/168 (16.1)	14/162 (8.6)	
11/168 (6.5)	10/166 (6.0)	
19/165 (11.5)	18/158 (11.4)	
	Folate 87/168 (51.8) 58/168 (34.5) 76/165 (46.1) 27/168 (16.1) 11/168 (6.5)	

Risk Ratio (95% Confidence Interval)

Cole BF et al. JAMA. 2007;297(21):2351-2359

Calcium and Vitamin D

Vitamin D
Serum 25-(OH)D & Colorectal Cancer Risk

2.00 P trend < .001

1.00

0.50

20 40 60 80 100 120

Circulating 25(OH) D, in nmol/L

Calcium

Total Calcium Intake & Colorectal Cancer Risk

McCullough et al. JNCI 2019 Keum et al, Int J Cancer 2014

Supplemental Vitamin D and Calcium for Cancer and CRC

Vitamin D Trial (VITAL)

25871 subjects 2000 IU Vitamin D₃ vs placebo

All Cancer HR=0.96 (0.88-1.06)

Colorectal Cancer HR=1.09 (0.73-1.62) (98 events)

Manson et al. NEJM 2019 3;380(1):33-44 Bristow et al Br J Nutr 2013;110(8):1384-93

Calcium Trial Combined Analysis:

5 trials 7221 subjects 0.6 – 1.0 gm Ca⁺⁺

All Cancer HR=1.07 (0.89, 1.28) 448 cases

Colorectal Cancer HR=1·63 (1·01, 2·64) 70 cases

Calcium

Calcium Supplementation for Adenoma recurrence

Shaukat A et al. AJG 2005;100(2):390-4.

Can Calcium Chemoprevention of Adenoma Recurrence Substitute for Colonoscopic Surveillance or Extend Surveillance Intervals?

Cost Effectiveness Analysis

Shaukat A, Parekh M, Lipscomb J, Ladabaum U. Can calcium chemoprevention of adenoma recurrence substitute or serve as an adjunct for colonoscopic surveillance? Int J Technol Assess Health Care. 2009;25(2):222-31

Cost effectiveness of Calcium supplementation

	Life years per person	Cost per person	Life years gained in a cohort of 1000 people (vs. NH)
Natural History (NH)	18.6424	\$2,450	0.0
Calcium	18.6543	\$2,350	11.9
Surveillance	18.7289	\$4,003	86.5
Calcium + Surveillance	18.7292	\$4,118	86.8

Shaukat A, Parekh M, Lipscomb J, Ladabaum U. Can calcium chemoprevention of adenoma recurrence substitute or serve as an adjunct for colonoscopic surveillance? Int J Technol Assess Health Care. 2009;25(2):222-31

Metformin

Rokkas et al. Eur J Int Med 2016

Statins and CRC Risk

Bardou et al Gut 2010

All together

Events Total Events Total Weight M-H, Random, 95% CI Year M-H, Random, 95% CI Study or Subgroup 1.1.1 Metformin 0.42 [0.21, 0.85] 2016 Higurashi 2016 22 71 62 4.5% Subtotal (95% CI) 71 62 4.5% 0.42 [0.21, 0.85] Total events 22 32 Heterogeneity: Not applicable Test for overall effect: Z = 2.40 (P = .02)1.1.2 Non-aspirin NSAIDs Arber 2006 95 589 83 334 8.2% 0.58 [0.42, 0.81] 2006 Baron 2006 460 1158 646 1218 9.8% 0.58 [0.50, 0.69] 2006 Bertagnolli 2006 548 1356 421 679 9.6% 0.42 [0.34, 0.50] 2006 Subtotal (95% CI) 3103 2231 27.6% 0.52 [0.40, 0.66] Total events 1103 1150 Heterogeneity: Tau2 = 0.03; Chi2 = 7.71, df = 2 (P = .02); I2 = 74% Test for overall effect: Z = 5.30 (P < .00001) 1.1.3 Aspirin Baron 2003 721 171 363 9.0% 0.80 [0.62, 1.03] 2003 Sandler 2003 43 259 70 258 7.1% 0.53 [0.35, 0.82] 2003 Logan 2008 99 434 121 419 8.4% 0.73 [0.53, 0.99] 2008 Benamouzig 2012 42 102 5.5% 1.06 [0.59, 1.91] 2012 33 83 Ishikawa 2014 73 0.69 [0.44, 1.08] 2014 152 159 6.8% Subtotal (95% CI) 1668 1282 36.8% 0.74 [0.63, 0.87] Total events 540 468 Heterogeneity: Tau2 = 0.00; Chi2 = 4.13, df = 4 (P = .39); I2 = 3% Test for overall effect: Z = 3.65 (P = .0003) 1.1.4 Calcium Baron 2015 [Calcium] 345 762 362 761 9.5% 0.91 [0.75, 1.12] 33 459 24 454 5.9% 1.39 [0.81, 2.39] 1999 Baron 1999 Bonithron 2000 28 176 36 178 5.9% 0.75 [0.43, 1.29] 2000 Subtotal (95% CI) 0.95 [0.73, 1.23] 1397 1393 21.3% Heterogeneity: $Tau^2 = 0.02$; $Chi^2 = 2.75$, df = 2 (P = .25); $I^2 = 27\%$ Test for overall effect: Z = 0.39 (P = .70) 1.1.5 Vitamin D 438 1024 442 1035 Baron 2015 [VitD] 9.7% 1.00 [0.84, 1.19] Subtotal (95% CI) 1024 1035 9.7% 1.00 [0.84, 1.19] 438 442 Total events Heterogeneity: Not applicable Test for overall effect: Z = 0.03 (P = .98) 0.71 [0.58, 0.87] Total (95% CI) 7263 6003 100.0% Total events 2509 2514 Heterogeneity: Tau2 = 0.10; Chi2 = 70.76, df = 12 (P < .00001); I2 = 83% Test for overall effect; Z = 3.35 (P = .0008) Favours Treatment Favours Placebo Test for subgroup differences: $Chi^2 = 24.50$, df = 4 (P < .0001), $I^2 = 83.7\%$

Odds Ratio

Odds Ratio

Treatment

Placebo

Chapelle N, Martel M, Toes-Zoutendijk E, et al Recent advances in clinical practice: colorectal cancer chemoprevention in the average-risk population Gut 2020;69:2244-2255.

Medication	CRC mortality	CRC incidence	Adenoma/SSL incidence	Safety
Aspirin	Pooled RCT data: 33% lower mortality over 20 yrs	Pooled RCT data: 24% lower incidence over 20 yrs	Meta-analysis of RCTs: 17% lower adenoma recurrence in those with prior adenoma / RCT: 35% lower adenoma recurrence in those with prior CRC	Meta-analysis of RCTs: 59% higher risk of major GI bleeding, 34% higher risk of intracranial bleeding
Non-aspirin NSAIDs	RCT: no effect on mortality in those with CRC	Meta-analysis of observational studies: 26% lower incidence	RCTs: 34-45% lower adenoma recurrence in those with prior adenoma	Substantial cardiovascular (COX-2 inhibitors) and GI bleeding (non-selective NSAIDs) risks
Metformin	Meta-analysis of observational studies: 25% lower mortality in those with CRC and diabetes	Meta-analysis of observational studies: 27% lower incidence in those with diabetes	RCT: 40% lower adenoma recurrence in non-diabetics / Meta-analysis of observational studies: 20% lower adenoma incidence in those with diabetes	Relatively safe, but mild GI side effects are common
Calcium		Prospective cohort: 22% lower incidence	RCTs: mixed results	Relatively safe
Vitamin D		RCT (vit D + calcium): no effect / Observational studies: mixed results	RCT: no effect on adenoma recurrence or SSL incidence	Relatively safe
Folic acid		Meta-analysis of RCTs: no effect	Meta-analysis of RCTs: no effect on adenoma recurrence	Relatively safe
Statins	Observational studies: mixed results	MA observational and RCT: Mixed results	Observational studies: mixed results	Relatively safe

Liang PS, Shaukat A. CGH 2021;19:1327-36

Best Practice Advice

Agent	Recommendation
ASA	1) younger than 70 years with a life expectancy of at least 10 years, 2) have a 10-year cardiovascular disease risk of at least 10% a, and 3) not at high risk for bleeding
Metformin	Type 2 Diabetics
NSAIDs	
Calcium	
Vitamin D	×
Statins	×
Folic acid	×

Future Directions

- Combination?
- Food fortification?

• Tailored to age. sex and risk?

cified with a minimum of 25 units of Vitamin B

